Chapter 3.1

1 (a) Temperature is a macroscopic concept that is proportional to the average random kinetic energy of the molecules of a substance. (b) Heat or thermal energy is the energy that is exchanged between two bodies as a result of a temperature difference between them. (c) Internal energy is the sum of the total random kinetic energy and the total intermolecular potential energy of the molecules of a substance.

2 The thermal energy lost by one body must equal the thermal energy gained by the other because of energy conservation. The changes in temperature are not, however, necessarily equal.

3 (a) No thermal energy has been exchanged since the temperature of the two halves is the same. (b) Same as before, 300 K . (c) Half of the original, $4 \times 10^{6} \mathrm{~J}$.

4 (a) The volume of 22.4 L is $22.4 \times 10^{-3} \mathrm{~m}^{3}$. There are 6.02×10^{23} molecules in this volume and so the volume per molecule is $\frac{22.4 \times 10^{-3}}{6.02 \times 10^{23}}=3.7 \times 10^{-26} \mathrm{~m}^{3}$. (b) One mole of lead has mass 207 g and so a volume given by $\rho=\frac{M}{V} \Rightarrow V=\frac{M}{\rho}=\frac{207 \mathrm{~g}}{11.3 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{3}}=\frac{207 \times 10^{-3} \mathrm{~kg}}{11.3 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{3}}=1.8 \times 10^{-5} \mathrm{~m}^{3}$. So the volume per molecule is $\frac{1.8 \times 10^{-5}}{6.02 \times 10^{23}} \mathrm{~m}^{3}=3.0 \times 10^{-29} \mathrm{~m}^{3}$. (c) The ratio is $\frac{3.7 \times 10^{-26}}{3.0 \times 10^{-29}} \approx 1200$.
The separation of the molecules (hydrogen to lead) is then $\sqrt[3]{1200} \approx 10$ (to 1 s.f.).
This shows a general result, namely that the ratio of the separation of gas molecules to the separation of solid molecules is of order 10.

5 (a) One mole of aluminum contains 6.02×10^{23} molecules and has a mass of 27 g . Thus one molecules has mass $\frac{27}{6.02 \times 10^{23}} \mathrm{~g}=\frac{27}{6.02 \times 10^{23}} \times 10^{-3} \mathrm{~kg}=4.5 \times 10^{-26} \mathrm{~kg}$. (b) One cubic meter of aluminum has a mass given by $\rho=\frac{M}{V} \Rightarrow M=\rho V=2.7 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times 1 \mathrm{~m}^{3}=2.7 \times \frac{10^{-3} \mathrm{~kg}}{\left(10^{-2}\right)^{3} \mathrm{~m}^{3}} \times 1 \mathrm{~m}^{3}=2.7 \times 10^{3} \mathrm{~kg}$. This corresponds to $\frac{2.7 \times 10^{3}}{4.5 \times 10^{-26}}=6.0 \times 10^{28}$ molecules per cubic meter.

6 (a) One mole of copper contains 6.02×10^{23} molecules and has a mass of 64 g . Thus one molecules has mass $\frac{64}{6.02 \times 10^{23}} \mathrm{~g}=\frac{64}{6.02 \times 10^{23}} \times 10^{-3} \mathrm{~kg}=1.1 \times 10^{-25} \mathrm{~kg}$. (b) One cubic meter of copper has a mass given by

$$
\rho=\frac{M}{V} \Rightarrow M=\rho V=8.96 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times 1 \mathrm{~m}^{3}=8.96 \times \frac{10^{-3} \mathrm{~kg}}{\left(10^{-2}\right)^{3} \mathrm{~m}^{3}} \times 1 \mathrm{~m}^{3}=8.96 \times 10^{3} \mathrm{~kg} . \text { This }
$$ corresponds to $\frac{2.7 \times 10^{3}}{1.1 \times 10^{-25}}=2.4 \times 10^{28}$ molecules per cubic meter.

